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Abstract: This paper studies the effect of pupil displacements on the best
achievable performance of retinal imaging adaptive optics (AO) systems,
using 52 trajectories of horizontal and vertical displacements sampled at
80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect
is quantified in the form of minimal root mean square (rms) of the residual
phase affecting image formation, as a function of the delay between PT
measurement and wavefront correction. It is shown that simple dynamic
models identified from data can be used to predict horizontal and vertical
pupil displacements with greater accuracy (in terms of average rms) over
short-term time horizons. The potential impact of these improvements
on residual wavefront rms is investigated. These results allow to quantify
the part of disturbances corrected by retinal imaging systems that are
caused by relative displacements of an otherwise fixed or slowly-varying
subject-dependent aberration. They also suggest that prediction has a
limited impact on wavefront rms and that taking into account PT measure-
ments in real time improves the performance of AO retinal imaging systems.
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1. Introduction

Adaptive optics (AO) systems, which combine a wavefront sensor (WFS) and a deformable
mirror (DM) inserted into the telescope’s optical path, have been used since the early 1990s
to counter the effects of atmospheric turbulence on ground-based telescopes [1]. This tech-
nique, together with associated DM and Hartmann-Shack (HS) WFS technology, has been sub-
sequently and successfully adapted to correct optical aberrations in retinal imaging. In 1994,
Liang et al demonstrated for the first time the feasibility of wavefront sensing in the eye [2].
This work was extended in 1997 by Liang and Williams, who measured the eye aberrations
up to a very high order (65 Zernike modes) and were the first to close an AO loop on an eye
in vivo and to obtain sharper images of a human retina [3] – see also [4, 5]. In the 2000s’, as
noted in a 2010 review of emerging clinical applications of this technique, ‘AO imaging has
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changed the way vision scientists and ophthalmologists see the retina, helping to clarify our
understanding of retinal structure, function, and the etiology of various retinal pathologies’ [6].
Existing retinal imaging AO systems use the same integral-action controller popular in astro-
nomical AO to compute DM controls from WFS measurements. However, several more recent
works have investigated and/or tested improved controller structures, including Smith predic-
tors [7], adaptive controller tuning [8] and minimum-energy control for dual-deformable-mirror
‘woofer-tweeter’ systems [9, 10].

In astronomy, accurate models of atmospheric turbulence enable to construct detailed ‘error
budgets’ which enable designers of new AO systems to translate image quality requirements
of end-users (i.e., astronomers) into detailed performance requirements for all components and
elements of the AO loop. Clearly, such an understanding of the physical nature and statistical
properties of disturbances to be compensated would be hugely beneficial for future develop-
ments of retinal imaging AO systems. Studies of the trajectories of aberrations measured by
HS WFSs suggested that different optical modes exhibit complex temporal behavior, hinting
at a combination of diverse underlying mechanisms [11, 12]. Another experiment showed the
non-negligible contribution of the tear film [13]. However, a number of authors noted that eye
motion played a major role, see, e.g., [14, 15]. Thus, at least for the purpose of efficient DM
control computation, a plausible conjecture is that a major part of performance degradation can
be modeled as resulting from the relative displacements of a fixed or slow-moving and subject-
dependent pupil aberration, as stated in [16]. One way to investigate the implications of this
conjecture in terms of achievable performance is to consider an ideal case where the aberration
seen by the AO system results only from the relative horizontal and vertical relative displace-
ments (with respect to the imaging system) of an otherwise fixed pupil aberration. Throughout
this paper, we shall call this simplified scenario the ‘moving aberration’ assumption.

For an ideal retinal imaging AO controller achieving perfect sensing of the aberration through
the WFS and perfect compensation by the DM, the residual variance would be equal to the
tracking error variance. In addition, under the ‘moving aberration’ assumption, this tracking
error variance can be evaluated by taking a representative sample of fixed aberrations and mov-
ing them by appropriately distributed horizontal and vertical displacements during the total AO
loop’s delay between WFS measurement and DM correction.

The moving aberration hypothesis also suggests that a sensor capable of monitoring pupil
displacements in real time could be used to improve aberration correction. In recent years, such
so-called ‘pupil trackers’ (PT) camera-based devices have been integrated into retinal imaging
systems and have been used for a number of purposes, for example to detect and forecast where
a subject is looking within a scene. In 2006, Hammer et al. used a pupil tracker integrated into
a scanning laser ophtalmoscope system to actively compensate pupil movements in real time
using a flat two-degrees of freedom field stabilization mirror [17]. A WFS-based pupil tracker,
which eliminates the need for a separate PT camera, was proposed in [18].

In 2012, Sahin et al. [16] implemented a PT-based real-time control scheme where DM’s in-
puts were computed by shifting a previously estimated eye aberration across the horizontal and
vertical axis according to pupil displacement measurements. This experiment conducted on a
robotic ‘model eye’ and three human test subjects showed that the PT-based control achieved a
level of correction performance broadly similar to a conventional AO controller. This pioneer-
ing work provided additional (if somewhat circumstantial) evidence in support of the moving
aberration assumption. This PT-based control experiment used a PT system developed by the
company Imagine Eyes.

The analysis presented in this paper extends the preliminary results obtained in [19], with
more statistical considerations and in-depth performance evaluation. We used a set of pupil-
displacement trajectories measured by the same PT device (see Acknowledgments section),
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together with measured wavefronts, to derive quantitative assessments of the tracking error
variance term entering an AO error budget under the moving aberration assumption. The dis-
placement data set comprises a total of 52 displacement trajectories, each about 13 seconds
long, recorded by Betul Sahin at Imagine Eyes on 13 different healthy subjects, with a PT
based on a camera running at 80 frames per second. The wavefront data set corresponds to 500
wavefronts measured on healthy subjects by Imagine Eyes, under the form of Zernike coeffi-
cients for radial orders 1 to 6. Using these data sets, we simulate and quantify the tracking error
due to the displacement of the aberration between the time its last position has been measured
by the system and the moment the DM correction is applied. As explained above, this corre-
sponds to the ultimate performance (expressed in terms of residual wavefront rms) that could
be achieved by a standard AO loop fitted with ideally accurate WFS and DM and operating at a
given WFS/DM sampling rate – or alternatively by a purely PT-based controller endowed with
an exact knowledge of the fixed aberration.

In both cases, the tracking error is expressed centrally as a function of the total delay between
the last available WFS/PT acquisition and DM correction – in our case, for delays ranging from
12.5 ms to 85 ms. Also, this computation is predicated on the implicit assumption that the last
available pupil position measurement is used to estimate the pupil position at the time when
the control is actually applied. An alternative would be to use a more elaborate method to
predict the pupil’s displacement in this short time interval. To this effect, we have tested several
standard short-time prediction methods based on simple dynamic stochastic models of eye pupil
displacement.

In the domain of retinal imaging, whenever a patient is fixing on a target, involuntary residual
movements are indeed still present, due to a combination of eye and head movements. For in-
stance, the human eye is known to have micro-movements [15] which are essential to our vision
as they make it possible to maintain the transmission of the image fixed in our brain [20]. Such
micro-movements are for example studied in [21], where the authors seek a mono-dimensional
Auto-Regressive (AR) model of tremor movements. Martinez-Conde et al. [15] mention three
main types of eye movements during visual fixation: tremor, drifts and micro-saccades. Quan-
titatively, pupil displacements occur with different translational/torsional amplitudes and fre-
quencies (comprising approximately 0.001-1 degrees and 0.1-100 Hz), and are known to vary
significantly from individual to individual [22, 18], and also for one same individual observed
at different times. Dynamic stochastic models of eye pupil displacement need therefore to be
adapted to each individual, and thus identified from each displacement trajectory.

This paper is organized as follows. Section 2 describes the PT set-up and the data sets used
throughout the paper; a preliminary statistical analysis of the pupil displacement trajectories is
presented, focusing on the issues of saccade detection in real time and PT frame-rate selection.
Section 3 is devoted to construction and identification from PT data of stochastic pupil displace-
ment models. Section 4 discusses the performance of these identified models for short-term
prediction of pupil displacements. In section 5, the tracking errors (residual wavefront rms)
corresponding to the recorded pupil displacement trajectories applied to the measured wave-
front data set are evaluated, and the impact of pupil prediction on performance is discussed.
Some conclusions and perspectives for future works are presented in Section 6.

2. Description of the PT data and basic setup

The pupil tracking system (see [23] for more details) consists in imaging the pupil with a
CCD camera using Near Infrared (NIR) LEDs as light sources, followed by digital image post-
processing. The system works for 6-9mm diameter pupils with an accuracy of ±20 μm (3σ ).
The measurement sampling frequency Fs is 79 Hz or 80 Hz (depending on the acquisitions),
with a CCD exposure time of 10 ms. The subject’s head is stabilized with a standard ophthalmic
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chinrest (see Fig. 1). Measurements from this PT correspond to eye pupil’s positions following
the horizontal and vertical axes. Our PT dataset consists of 52 trajectories, corresponding to
data acquired from 13 different people, each trajectory being about 13s long.

Figure 2 shows an example of position measurements for a subject in our sample. These
horizontal and vertical trajectories show abrupt changes in measured positions due to saccades
(zones delimited by the dashed lines), which can also occur after eye blinking. These data are
used for a study on short-term prediction of eye pupil positions, where the identified dynamic
stochastic models allow also for automatic detection of saccades in real time. Then, we evaluate
the impact on residual wavefronts of pupil displacement and its predictions. A total of 500 phase
screens measured on different subjects by Imagine Eyes using a 32×32 high-resolution Shack-
Hartmann (haso 32-eye Wavefront Sensor) were used for the study. They have been compared
with synthetic ones obtained by Thibos’ model [22] in Section 5.

CCD camera
Lens

LEDs

Eye

Fig. 1. Pupil-Tracker (PT): acquisition (left) and system’s description.
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Fig. 2. Example of pupil position measurements for one of the subjects in our sample
(dashed lines delimit saccades zones).

We present in Fig. 3 two trajectories of horizontal and vertical pupil displacements, corre-
sponding to the same subject, during fixation of a fixed target. This illustrates the high variabil-
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ity of behavior for a same subject, and the presence of different types of eye micro-movements
noted in the introduction. These can be described as follows:

• Drifts: slow motions of the eye (up to a few Hertz), average 2-5arcmin in amplitude with
a mean speed of about 6 arcmin/s.

• Tremors: very high frequency oscillations. Tremors’ amplitudes and frequencies are usu-
ally in the range of the recording system’s noise. Motions amplitudes average 5-60arcsec
at frequencies up to ≈ 90 Hz.

• Micro-saccades: jerk-like eye movements averaging 6 arcmin in amplitude.

In these two recordings, one can distinguish clearly between blinks and saccades. A blink of
the eye is separated from a saccade by the absence of measurements from the PT. Tremors
correspond to smaller amplitude movements. It may be also noted that after a blink the position
may not be similar to that before the blink. In other words, a blink goes often with a saccade.
Also, a saccade following the horizontal axis does not necessarily correspond to a saccade
following the vertical axis, and vice versa.

With the selected sampling frequency of about 80 Hz, there will be aliasing on the tremor’s
and micro-saccades’ spectra. (Shannon-Nyquist sampling theorem: the sampling frequency Fs

must be greater than twice the maximum frequency of the analog signal to avoid aliasing of
frequencies > Fs/2 and to allow a perfect reconstruction from the sampled values.) In the case
of tremor, its very low amplitude (less than the diameter of a cone, as reported in [15]) leads to
include a large part of this movement in the system’s noise range (20 μm), so that the aliasing
of frequencies above 40 Hz will have anyway a low effect. Micro-saccades have a random
occurrence and a too short duration to be corrected in such an AO loop, but they are detectable
thanks to their high amplitudes and will be regarded as outliers values.

It has to be noted that measurements made by the PT result from the computation of the
center of the pupil in the PT plane, the pupil positions resulting from the projection on this
plane of a combination of eye and head movements. The center of the pupil is calculated taking
the center of an ellipse fitted to the image of the pupil taken by the PT’s camera [23]. Head
movements may also induce in the measurements slow drifts and kinds of saccades, which
become indistinguishable from the movements produced by the sole eye.

According to Thibos [22], one subject can present a high diversity in pupil movements,
therefore we consider all the PT data analyzed here as independent from each other. More-
over, instead of modeling the eye pupil’s positions, we will consider one-step displacements
(i.e. differences between positions). This eliminates the need to estimate the absolute reference
position, enables prediction algorithms to lock in immediately when saccades occur, and al-
lows to model the process around a zero value. Moreover, in an AO system, only displacements
are necessary to update the control values. As these displacements are computed from noisy
position measurements, they will be in return affected by a stronger noise component.

Prior characterization of the movements amplitude is necessary for the improvement of the
position estimation process. Let us here consider all one-step displacements as an ensemble.
Displacements depend on (and increases with) the time increment for which they are evalu-
ated. We can then plot the absolute value of the one-step displacements as a function of the
time delay between PT measurements. Figure 4 shows the upper bounds within which lie 99%,
95% and 90% of the absolute value of one-step displacements (dashed, dot-dashed and dotted
lines, respectively), and also the curve of their average values (dot-dashed line), as a function
of the delay between measurements; the plots mean that the amplitudes of practically all one-
step displacements are concentrated below 200 μm, and that extreme changes in the trajectories
represent a few events. Also, it can be seen that at Δt = 12.5 ms, 95% of the one-step displace-
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Fig. 3. Example 1: PT measurements during fixation for the same subject at different in-
stants (top and bottom). The time unit is Δt = 12.5 ms. Signal is a mixture of saccades,
drift, tremor, blink and small head movements. Noise measurement (3σ ) is 20 μm.
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ments have a value in the range of the PT measurement noise (20 μm). Thus, with this noise
level, it would be pointless to increase the PT rate.
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Fig. 4. Statistics of displacements as a function of the delay between PT measurements. The
unit delay is Δt = 12.5 ms. The curves represent the displacement values δ pm under which
we have 99%, 95% and 90% (dashed, dot-dashed and dotted lines, respectively) of the data,
when the delay between two successive positions varies from Δt to 8Δt. The average value
calculated considering all data is also shown (solid line).

3. Models and algorithms for displacement prediction

The choice of a model implies a choice of the most suitable variables to work on. As noted
above, we will consider one-step displacements defined as

δ pk = pk − pk−1 (1)

where pk is the vector of horizontal and vertical positions at sample time kΔt. Likewise, the
measured one-step displacement δ pm

k is defined as:

δ pm
k = pm

k − pm
k−1 (2)

where pm
k is the PT measurement at time kΔt. In order to correct for aberrations, one needs

to predict the actual position p. However, in order to assess the quality of this prediction,
one would need to have access, at least afterwards, to the true values of the eye pupil posi-
tions. In our setup, this ground truth is not available to evaluate prediction performance. Perfor-
mance is thus evaluated by comparing predictions with future measurements. Assuming that the
measurement noise is an additive zero mean white noise with standard deviation σ for both hor-
izontal and vertical positions, the performance indicators based on position errors are affected
by an additional uncertainty. This will not have a significant impact on relative performance of
prediction methods: the squared rms of the prediction error is equal to rms2 = ‖p̂− p∗‖2 +σ2

where p∗ is the true position (which is unknown). Therefore, the measurement noise affects the
rms computation in the same way for all methods.

As a consequence of Eq. (2), the position at time index k+ �, �≥ 1, is given by

pk+� = pk +
�

∑
j=1

δ pk+ j. (3)
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An estimate of pk+� based on all the measurements available until time k will then be computed
as

p̂k+�|k = pm
k +

�

∑
j=1

̂δ pk+ j|k (4)

where ̂δ pk+ j|k is the predicted values of the one-step displacements.
We will consider in the following three different algorithms for predicting pupil displace-

ments: the reference one, called ‘dummy’, consists in doing nothing else than taking as a pre-
diction the last available measurement. This is the reference because it is the simplest, and
because when the PT frame is of the order of an AO system frequency loop, the dummy predic-
tor is equivalent to the ideal AO loop, where perfect WFS measurements are used for perfect
DM correction. We will also consider two predictors based on Kalman filters, with simple au-
toregressive models of order 1.

3.1. A simple (dummy) predictor

Since one-step displacements are weakly correlated, a simple way to predict the future positions
is to take ̂δ pk+ j|k = 0 for any j ≥ 1. This leads to take the last measured position pm

k as predicted
value for all future positions:

p̂k+�|k = pm
k . (5)

The underlying position model is a random walk driven by a white noise sequence. This will
hereafter be called the dummy predictor.

3.2. Observer with parameter estimation

We reformulate the prediction problem in standard state-space form:

xk+1 = A xk + vk (6)

yk =C xk +wk (7)

where v and w are independent Gaussian white noises with covariance matrices Σv and Σw

respectively. The vector yk denotes the measured output, in our case yk = δ pm
k . Assuming un-

correlated horizontal and vertical one-step displacements measurements with same variance,
we take here Σw = σ2

wI. The so-called state vector x contains the quantities that need to be esti-
mated. In order for x and y to be stationary processes, A should have all its eigenvalues inside
the unit circle. The magnitude of the eigenvalues expresses how fast the variable x decorrelates
in time. A simple autoregressive model of order 1 (AR1) has been chosen for both horizontal
and vertical one-step displacements. A scalar AR1 process {η} is defined as

ηk+1 = aηk + vk (8)

where v is a zero mean Gaussian white noise and |a| < 1. Using such a model for horizontal
and vertical displacements leads to x = δ p and

A =

(

ah 0
0 av

)

, C =

(

1 0
0 1

)

. (9)

Assuming uncorrelated horizontal and vertical displacements, covariance matrix Σv is taken as
Σv = σ2

v I.
When A and C are known, the state x can be estimated optimally (in the sense of minimizing

the variance of the estimation error) using an optimal observer, the widely used Kalman filter
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(see, e.g., [24], or [25] for an example in the different context of gaze prediction and anatomical-
based models). It shall thereafter be referred to as the SKF, for standard Kalman filter. The SKF
is described by recursive equations summarized as

x̂k|k = x̂k|k−1 +Hk
(

yk −C x̂k|k−1
)

(10)

x̂k+1|k = A x̂k|k (11)

where the so-called Kalman gain Hk is itself computed recursively together with Σk+1|k, the
covariance matrix of the prediction error (see below).

As said above, this formulation requires the matrix A to be known. This is not the case here
and therefore an on-the-fly identification is required along with the prediction. In our case,
matrix A contains two unknown parameters, ah and av. The parameter vector to be estimated is
therefore:

θ =

(

ah

av

)

(12)

and we shall denote as A(θ) = diag(θ) the corresponding value of A. Two solutions with low
computational burden have been tested: Kalman filtering with separate parameter identification,
and extended Kalman filter.

3.2.1. Standard Kalman filter with recursive least squares

We now use a recursive least-squares (RLS) procedure (see, e.g., [26]) to update the estimation
of parameter θ based on all the data obtained until time kΔt. This method is applicable to
models that are linear in parameters, i.e with measurements that can be expressed as

yk = δ pk = rkθ +wk. (13)

For our AR1 models with independent displacements, rk is a diagonal matrix with diagonal
terms δ pk−1, and the covariance matrix of {w} is also diagonal. Thus, the RLS algorithm can
be split into two independent scalar estimators. We give here the more general version which
gives at each time step k an estimated value ̂θk:

1. Get yk (new measurement).

2. Using the previous estimate ̂θk−1, calculate the output error ek = yk − rk
̂θk−1.

3. Compute the estimation error covariance matrix Σmc
k :

Σmc
k = Σmc

k−1 −
Σmc

k−1rkrkΣmc
k−1

1+ rkΣmc
k−1rk

(14)

4. Define the gain Lk as Lk = Σmc
k rk.

5. Compute the new estimate as
̂θk = ̂θk−1 +Lkek

6. Increment k and go to step 1.

The algorithm starts at k = k0 such that the matrix rk0
rk0

is invertible, and with initial values:

Σmc
0 = (rk0

rk0
)−1

̂θ0 = Σmc
0 rk0

y
k0

#254371 Received 25 Nov 2015; revised 12 Jan 2016; accepted 12 Jan 2016; published 25 Feb 2016 
(C) 2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.001051 | BIOMEDICAL OPTICS EXPRESS 1060 



with

rk0
=

⎛

⎜

⎝

r0
...

rk0

⎞

⎟

⎠ , y
k0
=

⎛

⎜

⎝

y0
...

yk0

⎞

⎟

⎠ . (15)

One iteration of the SKF+RLS identification/prediction procedure can then be summarized as
follows:

1. Get yk (new measurement).

2. Using the previous estimate x̂k|k−1, calculate the innovation ỹk = yk −C x̂k|k−1.

3. Compute the estimation gain Hk = Σk CT (Σw +C Σk CT )−1.

4. Update the state estimate x̂k|k = x̂k|k−1 +Hk ỹk.

5. Update Σk|k = Σk −Hk C Σk.

6. Run a RLS to update parameter ̂θk.

7. Calculate Σk+1 ≡ Σk+1|k = A(̂θk) Σk|k A(̂θk)
T
+Σv.

8. Compute one-step and two-step ahead predictions x̂k+1|k = A(̂θk) x̂k|k, x̂k+2|k =

A(̂θk)
2 x̂k|k.

9. Increment k and go to step 1.

Initialization of all variables is set to zero, except for covariance matrices which are set to
λ I, with λ >> 1. Note that x̂k+1|k and Σk+1|k+1 are no longer optimal nor do they correspond
anymore to conditional expectations; x̂k+1|k is only an estimate based on all measurements until
time index k. This will be true also for the extended Kalman filter described below.

When using the SKF+RLS method, we have set some limits to the estimated transition matrix
diagonal values. (This matrix is 2×2, comprising the two axes of movement.) They were forced
to lie between 0.3 and 0.9 (a value of one is equivalent to the random walk case), and then
the transition state matrix was updated (at each time step) taking the average of the 40 latest
estimated values for its diagonal elements. This ensured that the parameter values would not
diverge.

Also, in order to get the most out of the models described in Section 3 we had to scan through
a set of input parameters, such as the relative strength of the noise and process covariances
matrices. We screened through a wide range of values, and found that by taking σ2

v /σ2
w ≈ 100

we obtained the best results in terms of rms of the difference between prediction and measured
data. Performance is however not very sensitive to this value. It should nevertheless not be too
small, otherwise filters may be destabilized.

3.2.2. Extended Kalman filter

Another classical approach, very close to the previous one, consists in using an extended
Kalman filter (EKF, see e.g. [24]). In this formulation, parameters to be estimated are also
considered as state variables, so that an extended state denoted by xe is formed:

xe
k =

(

xe
1,k

xe
2,k

)

=

(

xk

θ

)

(16)
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Based on Eq. (6)-(7), we can write:

xe
1,k+1 = A(xe

2,k)x
e
1,k + vk (17)

xe
2,k+1 = xe

2,k (18)

(19)

which can be rewritten in a matrix compact form as

xe
k+1 = f e(xe

k)+ ve
k (20)

where

f (xe
k) =

(

A(xe
2,k)x

e
1,k

xe
2,k

)

and ve
k =

(

vk

0

)

(21)

The function f e(xe
k) mixes the data and parameters in a nonlinear way. The extended Kalman

filter based on such a system corresponds to an observer in the form:

x̂e
k|k = x̂e

k|k−1 +Lk

(

yk − f e(x̂e
k|k−1)

)

(22)

x̂e
k+1|k = f e(x̂e

k|k) (23)

The observer gain Lk is computed using a first order Taylor expansion of f e around the current
estimated value:

f e(xe
k)≈ f e(x̂e

k|k)+Ak (x
e
k − x̂e

k|k) (24)

where Ak is the Jacobian matrix evaluated in x̂e
k|k and defined as

Ak =
∂ f e(xe

k)

∂xe
k

∣

∣

∣

∣

x̂e
k|k

(25)

In the case of the AR1 models in Eq. (6), we have

Ak =

(

A(x̂e
2,k|k) diag(x̂e

1,k|k)
0 I

)

(26)

The gain matrix Lk is computed using this linear approximation and the measurement Eq. (7).
Using the extended state, this equation can be rewritten as

yk = C xe
k +wk (27)

with C = (I 0). One iteration of the complete procedure can be summarized as:

• Given the previously estimated state vector xe
k|k−1 and a new measurement, calculate the

innovation ỹk = yk −C x̂e
k|k−1.

• Update the state x̂e
k|k = x̂e

k|k−1 +Hk

(

yk −C x̂e
k|k−1

)

.

• Compute Ak using Eq. (26).

• Calculate Σk+1 ≡ Σk+1|k = Ak Σk A T
k +Σv.

• Update the gain: Hk+1 = Σk+1C
T (Σw +C Σk+1 C T )−1.

• Calculate Σk+1|k+1 = Σk+1|k −Hk+1 C Σk+1|k.

The updated state vector and covariance matrix of the prediction error is calculated through
an algorithm adapted from Yi Cao [27]. It is worth noticing that an extension to any ARn model
is possible through this formulation using the original A and C matrices of the SKF model to
build A . For further details refer to [24].
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3.3. Masking high amplitude movements

Sudden and large amplitudes movements can lead the eye pupil to be only partially seen by
the wavefront sensor, producing poor quality measurements. The identification of such events
are not only important for the post-processing (in which images acquired during that particular
period are not taken into account: they are generally completely blurred), but also for the real-
time parameter estimation process. Bearing Fig. 2 in mind, we have set an automatic procedure
for identification of abrupt changes in the trajectories, which were masked out in real time
during the RLS parameter estimation process. Hereafter we consider that the PT is working at
a 80 Hz frame rate, and the masking is designed for this sampling rate, in real time. The same
mask is used in the EKF estimation, where we freeze the state vector during such events; this
is done to have a fair comparison basis for the methods.

Once a sudden and large amplitude movement is identified, the masking is done in both axes
of the PT data (i.e. for horizontal and vertical movements). At time k, the standard deviation
σk of all δ pm up to that moment is computed, and a flag of ‘non-useful data’ is ascribed to a
temporal window comprising k±2 if |δ pm

k |> 3.5σk. This procedure masks out up to about 16%
of the trajectories in our data sample. Absolute displacements beyond 3.5σk are rare when fixing
firmly a target and can be masked in the post-processing (i.e. discarding the corresponding
science images; see Section 5 on wavefront errors).

4. Experimental data: pupil displacement prediction

4.1. Description of prediction error rms data

Adopting the state vector defined in Section 3, we compare here the measured and predicted
positions for multiples of Δt = 12.5 ms, the sampling period of the PT. We call horizontal (H)
and vertical (V) the two position axes measured by the PT, in order to avoid confusion with the
variables x and y used previously. Performance of the dummy predictor and of the predictors
based on SKF+RLS and on EKF was evaluated by computing, for each of the 52 trajectories,
the rms (in microns) of the prediction errors for horizontal and vertical movements and for
prediction horizons ranging from one to five time steps. Table 1 presents the mean rms value,
standard deviation, maximum value for each direction and prediction horizon, together with the
success rates for both Kalman filters, i.e. the percentage of trajectories for which they perform
better than the dummy predictor.

4.2. Improvement in mean rms

For most of the 10 combinations of direction and prediction horizon, both Kalman predictors
give lower average rms and standard deviation than the dummy predictor (the extended Kalman
filter has higher average and standard deviation for horizontal displacements and prediction
horizons of 4 and 5 steps). The Kalman filters also have lower maximum rms in all 10 cases.
However, dummy and Kalman predictors values are not so different (they differ on average
by less than 2 μm, i.e. much less than the PT measurement error itself), and it is necessary to
perform a statistical test.

For the two Kalman predictors, for every direction (horizontal and vertical) and prediction
horizon (1 to 5 steps), we performed a standard one-sided t-test (based on Student’s statistics,
using the Matlab function ttest.m) to decide whether the mean rms of the prediction error for
SKF+RLS or EKF is significantly lower than the mean rms for the dummy predictor. Table 2
presents the p-values for each of these 10 tests (i.e., the probability of observing a Student test
statistic as extreme as, or more extreme than, the observed value under the null hypothesis that
the two mean rms are equal). For vertical displacements, both Kalman filters perform signifi-
cantly better (at a 5% confidence level) than the dummy predictor for all prediction horizons.
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Table 1. Comparison of the performance of the predictors for all trajectories. Each cell
gives the mean, standard deviation and maximum value of the series of 52 horizontal and
vertical prediction errors rms (in μm) computed for all trajectories; the success rate (r) of
both Kalman predictors over the dummy predictor for the 52 trajectories is displayed in the
two last lines. Saccades and abrupt changes in the trajectories have been masked out in the
estimation process, as described in the text. H: horizontal; V: vertical. Δt = 12.5 ms.

1 step (Δt) 2 steps (2Δt) 3 steps (3Δt) 4 steps (4Δt) 5 steps (5Δt)
Predictor H V H V H V H V H V
Dummy

mean rms 8.57 6.39 15.50 10.40 21.28 13.90 28.58 21.11 35.58 24.72
st.d. 3.29 2.27 6.10 3.99 8.58 5.62 11.99 14.34 16.35 13.34
max. 18.81 15.15 34.90 25.89 47.82 35.49 65.07 82.54 91.51 88.46

SKF+RLS
mean rms 6.65 6.02 13.51 9.92 19.98 13.49 27.78 20.74 35.37 24.36

st.d. 2.65 2.19 5.36 3.51 7.98 5.01 11.28 14.08 14.78 12.96
max. 14.11 13.34 30.01 23.03 43.18 32.62 59.22 81.12 84.22 87.01

EKF
mean rms 6.76 5.95 13.81 9.84 20.54 13.41 29.01 20.76 37.25 24.44

st.d. 2.69 2.19 5.54 3.60 8.36 5.10 12.12 14.12 16.83 13.04
max. 14.33 13.72 31.67 23.59 46.37 33.29 64.56 81.93 88.48 87.83

r (SKF+RLS) 92% 69% 85% 65% 56% 60% 62% 56% 56% 54%
r (EKF) 92% 73% 83% 65% 52% 63% 52% 56% 42% 48%

For horizontal displacements, SKF-RLS and EKF perform significantly better than the dummy
predictor for horizons ranging respectively from Δt to 4Δt and from Δt to 3Δt.

Table 2. p-values for Student tests of assumption ‘the mean rms of SKF+RLS or EK predic-
tion error is smaller than the mean rms of the dummy predictor’ for horizontal and vertical
displacements ranging from Δt to 5Δt. Values below 0.0001 are rounded to zero. Any value
above 0.05 indicates that the difference is not significant.

Δt 2Δt 3Δt 4Δt 5Δt
Test H V H V H V H V H V
SKF+RLS vs Dummy 0 0 0 0.0018 0.001 0.0087 0.035 0.0146 0.3528 0.0149
EKF vs Dummy 0 0 0 0.0002 0.0378 0.0087 0.7584 0.0096 0.9475 0.023

Better results are obtained for horizontal displacements predictions for all methods, with
smaller average rms, standard deviations and maximum values. This is in agreement with [28]
where the authors noticed that, for fixational eye movements, the horizontal components are
much strongly correlated than the vertical ones at the short time scale. They explain this by the
fact that micro-saccades are controlled by different brainstem regions, as reported in [29].

Also, larger prediction horizons lead to non significant differences: the performance of the
Kalman filters for large horizons is not improved with respect to the dummy one. This is not
surprising, as the models of the Kalman filters have been built simple and for short-term pre-
diction (at most 2Δt). Examples with good rms improvement and without rms improvement
are given in Fig. 5 and 6 respectively, where a zoomed part of one trajectory of the horizon-
tal position is plotted along with predictions for Δt and 2Δt. The solid black line denotes the
measurements, whereas the dashed one represents the different predictions. Longer horizons
introduce larger gap between predicted and measured trajectories, but also spurious peaks, es-
pecially in the Kalman cases as illustrated by Fig. 5 where a peak starts to appear between 3

#254371 Received 25 Nov 2015; revised 12 Jan 2016; accepted 12 Jan 2016; published 25 Feb 2016 
(C) 2016 OSA 1 Mar 2016 | Vol. 7, No. 3 | DOI:10.1364/BOE.7.001051 | BIOMEDICAL OPTICS EXPRESS 1064 



and 3.2 s for Kalman predictors with 2Δt, increasing significantly the rms.
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Fig. 5. Comparison of predictors for Δt and 2Δt, in a good improvement case. Solid line:
measurements; dashed line: predictions.

4.3. Comparison of success rates

Table 3 is another way to look at the results, by taking the success rate of the Kalman based
predictions over the dummy prediction in the trajectories themselves. For each horizontal and
vertical displacement trajectory, we compute the percentage of sample times where the Kalman
prediction is closer to the measurement than the dummy prediction (in terms of absolute value
of the prediction error for each sample). These percentages are then averaged over the 52 tra-
jectories, and standard deviation, maximum and minimum values are given. Any value above
50% in the mean percentage indicates a prediction improvement in average over the dummy
predictor. Maximum and minimum values when Kalman predictors are better than dummy lie
within the ± 2 standard deviation interval, so there are no outliers. The first maximum value
of 77% (SKF+RLS, H, max. when better) means that over all 52 trajectories, for the horizon-
tal displacements, the prediction with SKF+RLS is better than dummy for at most 77% of the
samples. Similarly, the first minimum value of 40% (SKF+RLS, H, min. when better) indicates
that the prediction with SKF+RLS is better than dummy for at least 40% of the samples.

4.4. Relative performance improvements and degradations

Finally, it is interesting to appreciate one- and two-step prediction performance in terms of rms
when Kalman predictors perform better than dummy (for SKF+RLS H and V, 92% and 69% of
the cases, see the last two lines of Table 1 for all the percentages), and when dummy performs
better than Kalman predictors (for SKF+RLS H and V, 8% and 31% of the cases). We thus
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Fig. 6. Comparison of predictors for Δt and 2Δt, in a case without improvement. Solid line:
measurements; dashed line: predictions.

Table 3. Prediction error along trajectories: mean, standard deviation, maximum and min-
imum values of the percentage of sample times in which the Kalman filters give a smaller
prediction error than the dummy predictor. Any value above 50% of mean percentage indi-
cates a better prediction than with dummy.

Δt 2Δt 3Δt 4Δt 4Δt
H V H V H V H V H V

SKF+RLS vs Dummy
mean percentage of samples 65% 53% 59% 53% 54% 50% 50% 49% 48% 49%

stand. dev. 7.7% 8.7% 8.3% 7.7% 9.1% 7.3% 9.2% 6.9% 9.3% 6.8%
max. when better 77% 72% 72% 74% 67% 74% 65% 74% 63% 74%
min. when better 40% 37% 41% 37% 37% 35% 34% 38% 30% 35%

EKF vs Dummy
mean percentage of samples 67% 57% 61% 56% 56% 55% 53% 54% 50% 53%

stand. dev. 6.8% 6.8% 7.6% 6.3% 8.5% 6.2% 8.8% 6.2% 8.9% 6.1%
max. when better 79% 71% 74% 75% 71% 76% 69% 76% 67% 76%
min. when better 43% 41% 46% 43% 43% 44% 37% 44% 34% 43%

compare, in Table 4, (i) the relative performance improvement obtained by the Kalman predic-
tors when they perform better than dummy, and the relative performance degradation when they
perform worse, and (ii) the relative performance improvement obtained by the dummy predic-
tor when it performs better than Kalman predictors, and the relative performance degradation
when it performs worse. Maximum values lie within the mean ± 3 standard deviation interval
(except for the first value of 95% in the last line).

The values presented here confirm that in average, Kalman predictors perform better than
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dummy: for one-step ahead prediction, the mean improvement for 92% of the horizontal trajec-
tories is around 24%, and is around 11% for about 70% of the vertical trajectories. The perfor-
mance degradation for these trajectories when dummy is worse than Kalman predictors is about
33% and 14% for horizontal and vertical trajectories respectively, while maximum degradation
is very high (95% and around 44% respectively). For the trajectories where dummy has better
rms (8% for horizontal and around 30% for vertical, as deduced from Table 1), the improve-
ment is very low (at most 7%), while performance degradation on these trajectories induced by
Kalman predictors is very low.

Table 4. Relative performance improvements and degradations: mean, standard deviation
and maximum value of rms over the 52 trajectories in percentage points and μm (in brack-
ets). For dummy with respect to (w.r.t.) SKF+RLS for example, p% of improvement means
that dummy decreases the prediction error rms of SKF+RLS by p%, and p% of degradation
means that dummy increases the prediction error rms obtained by SKF+RLS by p%. Hori-
zontal and vertical displacement are considered, with one- and two-step ahead predictions.

Δt 2Δt
H V H V

Improvement with SKF+RLS w.r.t. dummy
mean 24% (2.084) 12% (0.753) 15% (2.849) 8% (0.986)
standard deviation 12% (1.257) 9% (0.719) 9% (1.658) 7% (1.116)
maximum 49% (5.294) 30% (3.132) 40% (6.494) 26% (4.615)
Degradation with SKF+RLS w.r.t. dummy
mean 2% (0.076) 7% (0.472) 4% (0.416) 5% (0.455)
standard deviation 2% (0.074) 3% (0.301) 3% (0.352) 3% (0.314)
maximum 4% (0.181) 12% (1.129) 8% (1.955) 11% (1.11)

Improvement with EKF w.r.t. dummy
mean 23% (1.985) 10% (0.663) 14% (2.242) 8% (0.949)
standard deviation 12% (1.251) 9% (0.693) 9% (1.590) 8% (1.112)
maximum 49% (5.321) 32% (3.203) 34% (6.547) 29% (4.938)
Degradation with EKF w.r.t. dummy
mean 4% (0.294) 2% (0.159) 8% (0.962) 2% (0.163)
standard deviation 3% (0.242) 3% (0.313) 11% (1.488) 3% (0.354)
maximum 7% (0.599) 13% (1.221) 30% (4.491) 13% (1.561)

Improvement with dummy w.r.t. SKF+RLS
mean 2% (0.076) 7% (0.472) 4% (0.416) 5% (0.455)
standard deviation 2% (0.074) 3% (0.301) 2% (0.352) 3% (0.314)
maximum 4% (0.181) 10% (1.119) 8% (1.195) 10% (1.111)
Degradation with dummy w.r.t. SKF+RLS
mean 34% (2.084) 14% (0.753) 19% (2.429) 10% (0.986)
standard deviation 21% (1.257) 13% (0.719) 14% (1.658) 10% (1.116)
maximum 95% (5.294) 43% (3.132) 68% (6.494) 35% (4.615)

Improvement with dummy w.r.t. EKF
mean 4% (0.294) 2% (0.159) 7% (0.962) 1% (0.163)
standard deviation 3% (0.242) 3% (0.313) 9% (1.487) 2% (0.354)
maximum 6% (0.599) 11% (1.221) 23% (4.491) 11% (1.561)
Degradation with dummy w.r.t. EKF
mean 32% (1.985) 13% (0.663) 18% (2.242) 10% (0.949)
standard deviation 20% (1.252) 13% (0.693) 13% (1.590) 10% (1.112)
maximum 95% (5.321) 46% (3.203) 50% (6.547) 42% (4.939)

4.5. Pupil displacement prediction: summary of results

Our experimental results confirm that a better prediction of the pupil displacements can be
achieved with the use of the Kalman tools. This improvement (measured as the mean rms of
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the prediction error) is statistically significant for all vertical displacements and for horizontal
displacements of less than 4Δt (with a slight advantage to the SKF+RLS method). However,
this also suggests that even at a 80 Hz PT rate, the measurements are weakly correlated, so
the Δp process at this rate tends to be close to a random walk, leading to results only slightly
better than the ones obtained with the dummy model. The goal of the next section is to evaluate
the impact of pupil motion and of course the level of improvement brought by the predictors
presented above.

5. Experimental data: impact of pupil motion on residual wavefront errors

In order to evaluate the impact of pupil motion on the imaging quality, we have performed a
series of simulations of the displacement of eye aberrations. The goal is to evaluate, given a
frozen aberration, the contribution to the residual wavefront due only to pupil displacement
(moving aberration hypothesis). Notice that, as we are focused on residual wavefront budget
error, the hardware limitations are not taken into account and the frozen aberration is assumed to
be known (i.e. there is no fitting error for the correction and aberrations are perfectly represented
— no spatial discretization due to a wavefront sensor).

5.1. Generation of phase screens

Phase screens were generated using sets of normalized Zernike coefficients obtained from
wavefronts measured on real healthy subjects by Imagine Eyes. The coefficients ranged from
radial orders 2 to 6, totaling 25 modes.

The phase screens were generated inside a larger frame than the actual pupil size of the instru-
ment, so we could always see aberrations when shifting the phase screens to mimic movements.
When setting up the size of the phase screen frame, the statistics of the eye movements (Sec-
tion 2) were taken into account, and extreme eye movements were actually not considered in
the final computation of the rms (as the images acquired during such events can be discarded
in post-processing).

The statistics of the generated phase screens were compared with a parameterization given
in the literature. Based on Fig. 9A of [22] and a rough estimate of its parameters for our phase
screen size, let us assume that the aberrations have a dependence of wavefront variance σ2

n (this
is a ‘partial’ variance in the sense that is due only to a radial order mode) vs. Zernike radial order
(n) as σ2

n = 8.96exp(−1.5n). Using this expression, synthetic phase screens can be generated
by taking a set of normalized Zernike modes (Zk) and linearly combining them with Gaussian
random weights with zero mean and [σ2

n /(n+ 1)]1/2 standard deviations. The histograms of
synthetic and real data wavefront rms are shown in Fig. 7. The distributions are not consistent
(two-sample Kolmogorov-Smirnov test (Matlab function kstest.m) at 5% significance level)
due to the large scattering of the real data, but have consistent median values (as attested by
the Mann-Whitney U-test (Matlab function signtest.m) at 5%). We have considered that this
data set obtained from measured wavefronts was more reliable for performance evaluation than
synthetic data, and have used it for our performance analysis.

5.2. Wavefront error analysis

The advantage of a PT as the one analyzed here is that it can run at a faster rate than the
wavefront sensor, as mentioned in [16]. Any analysis of error budget here requires therefore
the computation of differences between a reference phase screen (the corrected one) and a dis-
placed phase screen. This difference has to be piston and tip-tilt corrected, because these modes
introduce only an image translation. Since the final science image is produced by stacking indi-
vidual frames, the translation can be easily accounted for in the post-processing. In this section
we focus on the impact of the PT frame rate and of the prediction models on the error budget.
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Fig. 7. Statistics of phase screens generated from real and synthetic Zernike coefficients.
The latter shows a more concentrated distribution, while the histogram generated from real
data exhibits a large scattering. Dashed lines denote median values.

5.2.1. Impact of PT frame rate on wavefront error budget

Once the phase screens have been generated, it is possible to predict the wavefront error result-
ing from a random pupil displacement. Figure 8 was built based on 50 phase screens randomly
selected amongst 500; for each of them, 10 random directions were generated for every dis-
placement amplitude; displacement amplitudes ranged from 0 to 10% of the pupil size, by steps
of 1%. The reference phase screen is kept centered, and the rms of the difference between this
latter and the displaced pupil is computed, after piston and tip-tilt modes have been removed.
The figure shows average rms values along with their standard deviations (curve and error bars,
respectively). The trend of increasing error follows a quite linear relation, and shows that for a
10% of pupil size displacement not accounted for by the system correction, the wavefront error
can reach, on average, about 140 nm, with a large scatter around this value (bars correspond to
±σ , with σ the empirical standard deviation computed over 500 values).
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Fig. 8. Impact of random displacements of the pupil on the residual rms. The difference
between reference and shifted phase screens are piston and tip-tilt subtracted before the
computation of the rms values. The curve represents the average value and the error bars
are the standard deviations calculated from 500 realizations (a number of 50 randomly se-
lected phase screens were used here, and 10 random directions used for each displacement
amplitude).
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Fig. 9. Residual wavefront error (in rms, piston/tip/tilt removed) as a function of the PT
frame rate. The curves correspond to upper limits considering all 99%, 95% and 90% small-
est absolute value of the one-step displacements (dashed, dot-dashed and dotted lines). The
mean and median computed over all one-step displacements are shown as circles and stars,
respectively. The red and green lines represent the linear fits as explained in the text. The
arrow shows the current WFS rate.

We can connect this result with the displacements statistics of Section 2, Fig. 4. Those statis-
tics were built based on the delay between PT position measurements, so such delays can be
considered as the inverse of the PT frame rate. The expected residual wavefront rms as a func-
tion of this rate is shown in Fig. 9, which has been obtained by combining Fig. 8 and 4. For
the latter, both horizontal and vertical displacements were considered together (calculating the
square root of the sums of the squared displacements in both directions), instead of using the
statistics for separate axes. The sampling frequency of the WFS is shown in the figure as a ref-
erence point. It corresponds in our set-up to the case without PT, that is, a delay of 5Δt between
WFS measurement and DM correction (and thus image acquisition), which gives an eye pupil
position sampling frequency of 16 Hz. We used the mean/median rms values and made a linear
fit on the logarithmic scale. From that we get a general expression for the residual rms expected
for a given PT frame rate (in Hz):

wavefront rms ≈ α × (PT frame rate) β [nm] (28)

with α = 63.8 and β = −0.69 using the mean wavefront rms, and α = 42.1 and β = −0.72
using the median ones. Such fits are shown in red and green lines in Fig. 9, respectively. The
parameters have been estimated from the 500 realizations mentioned in Fig. 8, and can vary a
bit around such values depending on the phase screens randomly selected for the simulations
(about ±3 for α and ±0.01 for β ).

From this analysis, we confirm that, in order to minimize the residual error, we have to keep
the PT frame rate as high as possible. The power around −0.7 obtained above tells us that we
double the mean rms error, if for example, we drop the PT frequency from 80 Hz to 30 Hz.
The curves in Fig. 9 thus chart the gain in performance to be expected from the use of a PT at
a faster rate than the WFS. The case were the PT rate is equal to the WFS rate (about 10 Hz)
indicates the level of performance that could be achieved without PT. It shows that for 95% of
the one-step displacements, the performance loss in terms of wavefront rms is lower than 50
nm, (and lower than 100 nm for 99% of the displacements). This is to be compared with the rms
of the wavefront itself (without displacement), which lies between 0.1 and 8 μm approximately.
Depending on the trajectory, the rms of the aberration caused by the eye displacement may thus
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represent a large percentage of the total aberration.
In [16], the authors present an AO system running at about 10 Hz (8.4 precisely), and the AO

loop led to an average rms of 0.12± 0.05 μm for the three studied subjects (a PT was used in
this experiment at the same sampling frequency of 8.4 Hz to verify that eye aberrations were
mainly frozen wavefronts moving with the eye). If we suppose that the error budget due to
the eye displacement is at this frequency at most 40 nm rms (the value at 95% in Fig. 9), this
represents the third of 0.12 μm. With a PT running at, e.g., 80 Hz, this budget could decrease
to 7 nm rms (the 95% value at 80 Hz), which lies in the error range of the experiment. For
an imaging wavelength of 850 nm, going from 120 nm rms to ˜113 nm (=

√
1202 −402 +72)

would lead to an increase of about 5 points of Strehl ratio (SR), which is very significant in
terms of image quality. (The Strehl Ratio was computed with the Marechal approximation
SR ≈ exp(−σ2

ϕrms
), where the variance in radians is given by σ2

ϕrms
= ( 2π

λim
rms)2 with λim the

imaging wavelength.)

5.2.2. Impact of position predictions on wavefront error budget

With a PT working at 80 Hz, we can check now the impact of the position predictions on
the wavefront errors. These can be obtained by computing the root mean square of the differ-
ence between a reference wavefront displaced to the real position p and the same wavefront
displaced to the estimated position p̂, at each PT frame. This reflects the wavefront error contri-
bution due to the position estimation error, if computed inside the fixed and centralized pupil of
the imaging camera, after piston and tip-tilt removal. The larger phase screen frames have been
generated with a resolution of about 6 μm/pixel, so they were well-suited to track the impact of
small prediction errors in the positions. The simulations consist in computing the average rms
of displaced screens difference along a whole trajectory, and this is done for 20 phase screens.
Absolute displacements of the phase screen larger than about 500 μm have not been taken into
account in the computation of the rms error, as the corresponding images would be discarded.
The histograms of the overall rms average values are shown for the 52 pupil trajectories in Fig.
10 for prediction horizon Δt.

Mean values of the wavefront errors rms shown in the histograms as dashed lines are gathered
in Table 5. Comparing such values with the non-PT case in Fig. 9, we see once again that the
performance improvement is important when using a PT with fast rate. In the case of a fast rate,
predicting the pupil position can be made simple by keeping the last measured value. Using
more complicated schemes does not bring here significant improvement (less than 0.5 point of
SR for the numerical example presented in the previous section).

Table 5. Mean wavefront residuals (nm rms) obtained from the prediction models, for three
different time delays. These numbers are to be compared with the non PT case, correspond-
ing to an approximate delay of 5Δt and which leads to an mean and median rms of 12.1 nm
and 7.7 nm, respectively.

mean rms median rms
Δt 2Δt 3Δt Δt 2Δt 3Δt

Dummy 2.11 3.66 5.01 1.91 3.33 4.51
SKF+RLS 1.70 3.18 4.80 1.59 3.12 4.54
EKF 1.73 3.22 4.70 1.58 3.02 4.37
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Fig. 10. Residual wavefront errors obtained from prediction models, expressed in rms (nm),
for a prediction delay of Δt. The dashed line denotes the median value of the histogram.

6. Discussion and conclusions

We have investigated in this work the impact that a pupil tracker working at different rates than
a WFS can bring to a retinal imaging instrument equipped with adaptive optics. Using a data
set of 52 trajectories provided by Imagine Eyes, we started by analyzing the statistics of the
eye movements, from which we could derive constraints both for real-time and post-processing
of science images. Through this analysis, it has been verified that the vast majority of pupil
one-step displacements lies (in absolute value) below 200 μm, and on average below 30 μm for
measurement delays inside the AO cycle.

Three models have been presented for pupil position estimation, assuming a pupil tracker
working at 80 Hz. The first was the ‘dummy’ one, which corresponds to keeping the latest
measurement as a predictor for the next position (and which represents the best solution for
the case of a random-walk nature for the one-step displacements). The two other predictors
are of Kalman filter type, based on an auto-regressive modeling (order 1) of the position, with
parameters estimated in real time either through a recursive least square (RLS) approach or by
including the parameter in the state vector (extended Kalman filter, EKF, approach). Extreme
displacements have been masked out automatically in the real-time process, since they represent
the abrupt changes known as saccades.

Although one-step pupil displacements trajectories are weakly correlated, the pupil position
prediction obtained using identification/prediction tools such as Kalman filters can improve
results with respect to the dummy solution in terms of position prediction error rms. Improving
further prediction performance would need to consider more complex models and predictors,
capable of detecting and adapting to the different displacements behaviors in real time.

We have used 500 phase screens from healthy subjects, obtained by linearly combining
Zernike modes with measured aberration coefficients provided by Imagine Eyes. The idea was
to test the impact of the position predictors on the wavefront error, neglecting any other external
contributors to the system error budget. The difference between a reference phase screen and
the displaced one gives, inside the system’s pupil, the basis for the calculation of the wavefront
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error.
Considering a fixed reference at the pupil center, we have checked how pupil displacement

impacts on the wavefront error. The statistics of the absolute value of the one-step displacements
help us to check the impact of the pupil tracker frame rate on the wavefront error. We have
derived a relation for the expected wavefront error rms with pupil tracker rate proportional to
the power of −0.7. This means, for instance, that if the pupil tracker rate drops from 80 Hz to
30 Hz, one can expect the rms wavefront error to double. Comparing what is expected from a
pupil tracking at 10 Hz (which corresponds to an ideal AO set-up at 10 Hz with perfect WFS
measurement and DM correction) with a pupil tracking at 80 Hz, the performance improvement
in terms of wavefront rms is significant. We have compared the error budget caused by the pupil
displacement with real experiments presented in [16], for a system running at around 10 Hz. It
is shown that for such a system, the maximum degradation impact due to pupil displacement
when compared with the use of a PT at 80 Hz may be significant. The numerical example led to
an error budget of a third of the given experimental wavefront rms, and a Strehl ratio decrease
of about 5 points, significant in terms of image quality.

Rates higher than 80 Hz have not been considered, as the one-step displacements have at this
rate a value in the range of the PT measurement noise (20 μm). Other PT data with higher rates,
as in [30] where abberation dynamics are studied at 236 Hz, and lower measurement noise
could allow to extend the results to higher PT sampling frequencies.

We have also checked the impact of the pupil position predictors on the residual wavefront,
assuming a pupil tracker rate at 80 Hz. Comparing performance of the one- and two-step
Kalman predictors with respect to the dummy one, we found no significant improvement in
average in terms of residual wavefront rms. In this sense, just keeping the latest measurement
should be enough for a good wavefront prediction. However, for other new imaging systems
like AO SLO/OCT, the methods presented here could be of interest to compensate for motion
in-frame distortions for example, as reported in [31].

Further developments include the establishment of the error budget for a complete system.
The error budget due to pupil movement needs then to be completed with all the other bud-
get terms (WFS measurement errors, deformable mirror fitting error, error due to WFS spatial
discretization, precision of the fixed aberration estimation, calibration errors). Only residual
wavefront and the fixed ocular aberration estimation depend on pupil movement. Taking into
account all the remaining sources of rms wavefront error is essential to assess a complete perfor-
mance for a particular AO system. The next step is then to perform experimentations combining
AO retinal imaging with a PT device operating at a higher rate, and to compare retinal images
in term of visual quality. This is clearly beyond the scope of this paper and left for future re-
search. The results presented here allow nevertheless to evaluate, for any system, the possible
improvement brought by a pupil tracker at different rates, when the static wavefront is supposed
to be known (under the moving aberration assumption as proposed in [16]). In that sense, they
are independent of system components and estimation algorithms all together, and can thus be
used as part of a global system error budget analysis.
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